Achieving Metabolic Flux Analysis for S. cerevisiae at a Genome-Scale: Challenges, Requirements, and Considerations

نویسندگان

  • Saratram Gopalakrishnan
  • Costas D. Maranas
  • Kazuyuki Shimizu
چکیده

Recent advances in 13C-Metabolic flux analysis (13C-MFA) have increased its capability to accurately resolve fluxes using a genome-scale model with narrow confidence intervals without pre-judging the activity or inactivity of alternate metabolic pathways. However, the necessary precautions, computational challenges, and minimum data requirements for successful analysis remain poorly established. This review aims to establish the necessary guidelines for performing 13C-MFA at the genome-scale for a compartmentalized eukaryotic system such as yeast in terms of model and data requirements, while addressing key issues such as statistical analysis and network complexity. We describe the various approaches used to simplify the genome-scale model in the absence of sufficient experimental flux measurements, the availability and generation of reaction atom mapping information, and the experimental flux and metabolite labeling distribution measurements to ensure statistical validity of the obtained flux distribution. Organism-specific challenges such as the impact of compartmentalization of metabolism, variability of biomass composition, and the cell-cycle dependence of metabolism are discussed. Identification of errors arising from incorrect gene annotation and suggested alternate routes using MFA are also highlighted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Scale NAD(H/+) Availability Patterns as a Differentiating Feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in Relation to Fermentative Metabolism

Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/(+)) availability characterizes fermentative behavio...

متن کامل

Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network.

Full genome sequences of prokaryotic organisms have led to reconstruction of genome-scale metabolic networks and in silico computation of their integrated functions. The first genome-scale metabolic reconstruction for a eukaryotic cell, Saccharomyces cerevisiae, consisting of 1,175 metabolic reactions and 733 metabolites, has appeared. A constraint-based in silico analysis procedure was used to...

متن کامل

13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on ...

متن کامل

Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories

The low cost of natural gas has driven significant interest in using C1 carbon sources (e.g. methane, methanol, CO, syngas) as feedstocks for producing liquid transportation fuels and commodity chemicals. Given the large contribution of sugar and lignocellulosic feedstocks to biorefinery operating costs, natural gas and other C1 sources may provide an economic advantage. To assess the relative ...

متن کامل

The degree of redundancy in metabolic genes is linked to mode of metabolism.

An understanding of the factors favoring the maintenance of duplicate genes in microbial genomes is essential for developing models of microbial evolution. A genome-scale flux-balance analysis of the metabolic network of Saccharomyces cerevisiae has suggested that gene duplications primarily provide increased enzyme dosage to enhance metabolic flux because the incidence of gene duplications in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015